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The gene encoding a6(IV) collagen, COL4A6, was identified on the human X chromosome
in a head-to-head arrangement and within 452 base pairs of the «5(IV) collagen gene,
COL4AS5. In earlier studies, intragenic deletions of COL4A5 were detected in a subset of
patients with Alport syndrome (AS), a hereditary defect of basement membranes. In some
families, AS cosegregates with diffuse leiomyomatosis (DL), a benign smooth muscle
tumor diathesis. Here it is shown that patients with AS-DL harbor deletions that disrupt both
COL4A5 and COL4A6. Thus, type IV collagen may regulate smooth muscle differentiation

and morphogenesis.

Basement membranes (BMs) compartmen-
talize tissues and provide important signals
for the differentiation of the cells they
support. Type IV collagen, the major struc-
tural component of BM, is a triple-helical
molecule composed of three a chains ().
To date, five genetically distinct type IV
isoforms have been described in mammals
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(1-4). The al(IV) and a2(IV) chains en-
coded by COL4AI and COL4AZ, respec-
tively, are ubiquitous, whereas o3(IV),
a4(IV), and a5(IV) have restricted tissue
distributions (3, 5). On the basis of se-
quence similarities, the chains fall into two
classes: al (IV), a3(IV), and a5(IV) com-
pose the al-like class, and a2(IV) and
a4(IV) compose the a2-like class. The
human genes for the al(IV) and aZ(IV)
chains are located in a head-to-head con-
figuration on chromosome 13 (6), and the
a3(IV) and a4(IV) genes are similarly ar-
ranged on chromosome 2 (7). Thus, it
appears that the type IV collagens evolved
by duplication of an ancestral & chain gene,
giving rise to a pair of & chain genes with
closely apposed 5' ends. The pair presum-
ably underwent additional duplication, giv-
ing rise to the ancestors of the al(lV)-
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a2(IV) and a3(IV)-a4(IV) gene pairs. We
predicted that the a5(IV) gene, a member
of the al(IV)-like class, might also be
paired with an «2(IV)-like gene that had
not yet been identified.

Mutations in COL4A5 are estimated to
be present in ~50% of X-linked AS cases
(8). In males AS is characterized by pro-
gressive renal failure, sensorineural deaf-
ness, and ocular lesions; female carriers are
mildly affected. In some families AS coseg-
regates with DL (9), a benign proliferation
of smooth muscle in the esophagus, female
genitalia, and trachea. Both sporadic and
hereditary cases have been reported (10).
We have shown that AS-DL patients have
deletions that include the 5 end of
COL4AS5 (11), whereas AS patients with-
out DL have internal deletions or point
mutations of COL4AS (8). These results
suggested that DL is caused by the deletion
of an unidentified gene located upstream of
COL4AS.

To isolate the putative type IV collagen
gene upstream of COL4A5, we screened an
X-chromosome library with JZ-4, an a5(1V)
¢DNA clone (4), and isolated a 14.1-kb
clone, ALA226 (Fig. 1). It contained exon 1
of COL4A5 and an upstream 2.8-kb Hind
Il fragment, LA226-H6, that displayed
cross-species hybridization. We therefore
used LA226-H6 to probe an adult kidney
¢DNA library. Three identical clones, JZK-
1, JZK-2, and JZ-3, contained an open
reading frame (1643 bp) encoding a 21-
amino acid signal peptide, a 25-amino acid
noncollagenous segment, and a 502~amino
acid collagenous domain with nine interrup-
tions (Fig. 2) that are believed to confer
flexibility in type IV collagens. The deduced
translation product, which we have termed
a6(V), is a type IV collagen that has not
previously been detected genetically or bio-
chemically (12). Sequence analysis clearly
places a6(IV) in the a2(IV)-like class (Fig.
2). The head-to-head arrangement of
COL4A5 and COL4A6 resembles that of
COL4A1l and COL4AZ.
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Fig. 1. Restriction map of ALA226 which con-
tains the 5’ ends of both COL4A6 and COL4AS.
The striped bars represent phage arms; H,
Hind Nl. The DNA sequence of the region
containing the first exon of each gene is shown
as well as the deduced amino acid sequences
of the first exons (24).

1167



The relatively low frequency of
COL4AS mutations in AS patients suggests
that another gene may be involved in the
X-linked disease. In the adult kidney
COL4A6 is expressed (Fig. 3A) and is
therefore a good candidate for a second
X-linked AS gene. To explore this possibil-
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Fig. 2. Deduced amino acid sequences of the
c¢DNA clone JZ-3 of the human a6(IV) chain
and comparison of JZ-3 with the amino acid
sequences of the human al1(lV), a2(lV), and
a5(IV) chains (4, 23). Dashes indicate amino
acid identity, and conserved cysteine residues
are indicated by arrows. The locations of cys-
teines in the mature chains are identical in
«B(1V) and a2(IV). Interruptions in the collagen-
ous repeat are underlined and numbered (I
through 1X). The GenBank accession number is
L22763.
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ity, we performed Southern (DNA) blot
analysis (Fig. 4) on 140 AS patients, in-
cluding four unrelated AS-DL patients
(13), with JZ-3. We saw an abnormal pat-
tern only in the AS-DL patients. There was
a loss of bands in males and a 50% reduc-
tion in the intensity of some bands in
females, but the pattern was complex. We
therefore used a fragment, JZ-3-FR5, con-
taining exons 1 to 4 of COL4A6 to map the
deletions more precisely (Fig. 4). The 1.4-
kb and 5.6-kb Eco RI fragments, which
contain exons 1 and 2 of COL4A6, were
absent in males and reduced in intensity by
~50% in females; exons 3 and 4 were
intact. Hybridization with JZ-4 demonstrat-
ed the loss of exon 1 of COL4A5. Exons 2
to 10 of COL4AS were present in four of
the five patients. Therefore, the smallest
AS-DL deletions involve part of intron 1
and all of exon 1 of COL4A35, the intergen-
ic region, and exons 1 and 2 and part of
intron 2 of COL4A6.

We studied the distribution of the
a5(IV) and a6(IV) transcripts in the fetus
(Fig. 3B). An a6(IV) mRNA of ~7.0 kb
was found in meninges and esophagus and
was just detectable in fetal choroid plexus
and stomach. An ~7.0-kb transcript of
«5(IV) was present in many tissues but was
most abundant in choroid plexus, me-
ninges, and esophagus.
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Fig. 3. (A) Northern (RNA)
tissues from a normal adult. Probe JZ-3, repre-
senting a6(lV) sequences, was hybridized to a
filter containing ~2 ng of polyadenylate-en-
riched RNA (per lane) that had been separated
by agarose electrophoresis. (B) Northern blot
analysis of tissues from a 24-week human fetus.
Probes JZ-3 and PL-31 were serially hybridized
to a filter containing ~20 pg of total RNA in
each lane except for samples from aorta (—9
pg) and jejunum (~10 pg). We separated
RNAs as in (A). Ad, adrenal; Ao, aorta; B, whole
brain; Cbr, cerebrum; Cbl, cerebellum; Cp,
choroid plexus; E, esophagus; H, heart; J,
jejunum; K, kidney; Li, liver; Lu, lung; M,
meninges; Mo, medulla oblongata; Pa, pancre-
as; P, term placenta; S, stomach; Skm, skeletal
muscle; and Stm, striated muscle.
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We found deletions of both COL4A5
and COL4A6 in all four independent
AS-DL kindreds. How do these null muta-
tions cause DL? Interactions between cells
and the underlying BM substrate play a
vital role in embryonic morphogenesis
(14). Signals from BM proteins, transduced
by members of the integrin family of cell
surface receptors, regulate cell growth and
differentiation and influence cell shape by
affecting the cytoskeleton. Several BM
components interact with integrins (15)
and can affect differentiation of epithelial,
endothelial, and mesenchymal cells. Type
IV collagens contain binding sites within
the triple-helical (16) and NCI domains
(17) for several cell types including myo-
cytes (18). In the presence of antibodies to
a B integrin, chicken embryo myoblasts
continue to replicate, fail to fuse, and have
abnormal morphology (19). Although the
cited studies are based on collagen sources
rich in the ubiquitous al(IV) and a2(IV)
chains (20), the data presented here suggest
that the a3(IV) and a6(IV) chains may
play similar roles in cell-matrix interactions
in tissues involved in the AS-DL syndrome;
their absence may disrupt normal morpho-
genesis and lead to uncontrolled prolifera-
tion of distorted smooth muscle cells.
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Fig. 4. Analysis of collagen gene deletions in
five patients with AS-DL. Genomic DNA sam-
ples (~5 pg) from patients (filled symbols) and
controls (open symbols) were digested with
Eco Rl and hybridized with JZ-3-FR5, a cDNA
fragment containing the first four exons of
a6(IV). Squares indicate males and circles in-
dicate females. In the panel at the bottom, the
three exons of a6(IV) and two exons of a5(IV),
shown as black and striped boxes, respective-
ly, are placed on a genomic map of Eco Rl sites
(Rl). The open bars below show the minimum
extent of the deletion in each AS-DL patient.
The filled bars show the minimum extent of the
nondeleted regions. The shaded bars repre-
sent ambiguities in mapping the deletion
boundaries.



Mutations of neither COL4A5 alone nor
COL4A6 alone have been observed in
AS-DL. It is possible that only the a6(IV)
chain is critical for normal smooth muscle
differentiation. If so, our failure to observe
mutations of COL4A6 alone in AS-DL
might merely reflect the small sample size.
Linkage studies (21) have shown that
X-linked AS mutations are all tightly
linked to markers in the Xq22 region where
both COL4AS and COL4A6 are located.
COL4AG6 is the probable site for the ~50%
of X-linked AS mutations that have not
been found in COL4AS. Therefore, the
absence of DL in these patients suggests
that simultaneous mutation of both
COL4AS and COL4A6 is required for the
development of DL.

Attention has previously been focused
on the role of type IV collagen in adhesion
and motility of cells during tumor invasion
{22). Here we show that constitutional
mutations in type IV collagen can result in
cell proliferation in benign tumors. Muta-
tions in other BM components, whether
constitutional or acquired, may also partic-
ipate in the pathogenesis of other benign
tumors.
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Abbreviations for the amino acid residues are as
follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe: G,
Gly: H, His; I, lle; K, Lys; L, Leu; M, Met; N, Asn; P,
Pro: Q, GIn; R, Arg; S, Ser; T, Thr; V, val: W, Trp;
and Y, Tyr.
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